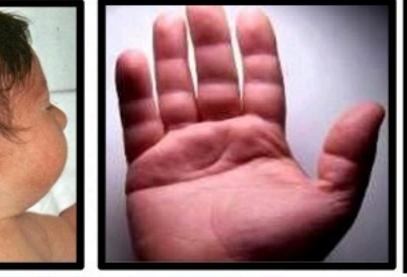


1) Trisomy 21 (Down syndrome)


Ophthalmology clinical features:

- Myopia
- Cataract
- Screen at birth, 6 mo. Than annually
- Glaucoma
- Brushfield spots (speckled irises)
- Nystagmus
- Strabismus

Musculoskeletal clinical features:

- Short neck, redundant skin
- Short metacarpals and phalanges
- Short 5th digit with Clinodactyly
- Single transverse palmer creases
- Wide gap between 1st & 2nd toes
- Short sternum
- Atlantoaxial instability (screen each visit)
- Hip dysplasia
- Recurrent joints dislocation

Cardiac clinical finding:

Endocardial cushing defect (AVSD)

(MOST COMMON)

- - Atrial septal defect
- Patent ductus arteriosus
- Pulmonary hypertension

Facial clinical features:

- Brachycephaly
- Up slanted palpebral fissures
- **Epicanthal folds**
- Three fontanels
- Flat nasal bridge, small nose
- Short hard palate
- Microcephaly : **Hearing screen**
- Screen at birth Low set ears
- Hearing loss
- Recurrent otitis media

Hematological finding:

- Transient myeloproliferative dis.
- ALL (> 1y.o)

Screen at birth AML (< 1y.o)

Endocrine finding:

- Hypothyroidism-
- Hyperthyroidism
- Diabetes mellitus
- Infertility Screen at birth, 6 mo.
- Obesity

than annually

than annually

Respiratory finding:

- Obstructive sleep apnea Screen
- Recurrent infections at 1 Y.O

- **Neuropsychiatric finding:**
- Hypotonia

Seizure

- Developmental delay
- Autism

Screen each visit

Recurrence

1%

Gastrointestinal finding:

- Duodenal atresia
- Annular pancreas
- Tracheoesophageal fistula
- Hirschsprung disease
- Imperforated anus
- Neonatal cholestasis
- Celiac disease (Screen at 2y.o)

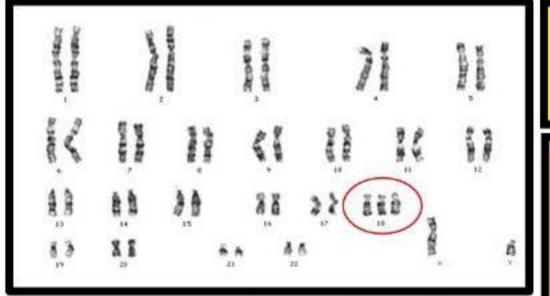
Causes:

- Nondisjunction (95%)
- Translocation (4%)
- Mosaic (1%)

When the recurrence become 100%?

If a parent has 21:21 translocation

Prenatal screen lab finding?


- Low α feto protein
- Low estriol
- High hCG and high inhibin

MATERNAL AGE (YR)	DOWN SYNDROME	
All ages	1 in 650	
20	1:1500	
30	1:1000	
35	1:385	
40	1:110	
45	1:37	
		ı

Ventricular septal defect Screen at birth

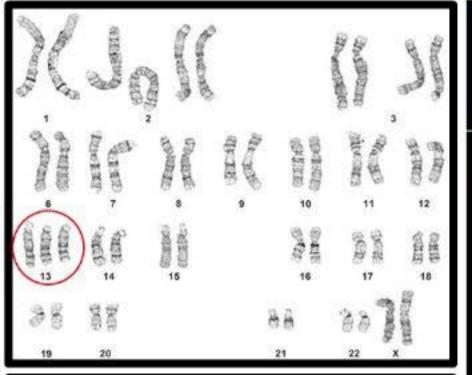
2) Trisomy 18 (Edwards syndrome)

Clinical features

- ✓ Rocker bottom feet
- ✓ Overlapping fingers
- ✓ Clenched fist
- ✓ Short sternum
- ✓ Hypoplastic nails
- ✓ Hypoplastic nasal alae
- ✓ IUGR
- ✓ Intellectual disability
- ✓ Microcephaly
- ✓ Hypertonia
- ✓ Prominent occiput
- ✓ Micrognathia
- ✓ Limited hip abduction
- ✓ Cleft lip / palate

2nd most common autosomal trisomy

- Most common cardiac defect ?
 - √ Ventricular septal defect (VSD)
 - ✓ Atrial septal defect (ASD)
 - ✓ PDA
- Most common cause of death?
 - ✓ Central apnea


Prenatal screen lab finding?

- \checkmark Low α feto protein
- ✓ Low estriol
- ✓ Low hCG

Prognosis

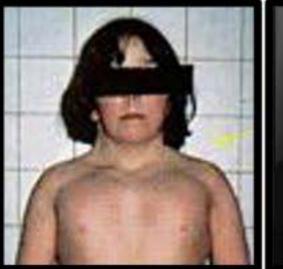
- √ 50% die in the 1st week of life
- √ 90% die by 1 year of age

3) Trisomy 13 (Patau syndrome)

Clinical features

- ✓ Midline defect
- ✓ Aplasia cutis congenita
- ✓ Microphthalmia
- ✓ Microcephaly
- ✓ Postaxial polydactyly
- √ Hypotonia
- ✓ Holoprosencephaly
- ✓ Hypoplastic / absent ribs
- ✓ Abdominal wall defect
- ✓ Deafness
- ✓ Colobomas
- ✓ Capillary hemangioma
- ✓ Genital anomalies
- ✓ Clenched fist


3rd most common autosomal trisomy


- Most common cardiac defect ?
 - Ventricular septal defect (VSD)
 - Atrial septal defect (ASD)
 - PDA
- Most common cause of death?
 - ✓ Central apnea

Prognosis

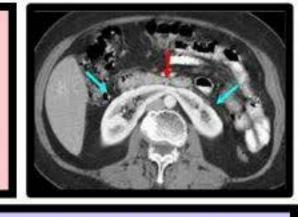
- √ 70% die in the 1st 3 months of life
- √ 95% die by 3 years of age
- ✓ Rarely reach up to 10 years

4) Turner Syndrome

Clinical features

- ✓ Short stature
- ✓ Lymphedema of hands & feet
- ✓ Shield chest
- ✓ Cubitus valgus
- ✓ Low posterior hairline
- ✓ Posterior rotated ears
- ✓ Webbed neck
- ✓ Short 4th metacarpal bone
- ✓ Normal intelligence (except Math)

What is the most consistent finding?


- ✓ Short stature (SHOX gene)
- ✓ Ovarian dysgenesis

What is the most common cardiac defect?

- Bicuspid aortic valve
- 2. Coarctation of aorta

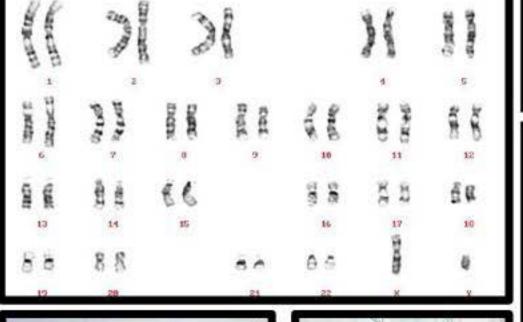
Labs finding?

- ✓ High FSH
- ✓ High FSH/LH
- ✓ Low estradiol

What is the most common renal anomaly?

- / Horseshoe kidney
- ✓ Double collecting system

Increases risk of:


- √ Hypothyroidism
- ✓ Hashimoto disease
- ✓ Celiac disease
- ✓ Inflammatory bowel disease

Increases risk of which Malignancy?

✓ Gonadoblastoma

Treatment

- ✓ Growth hormone
- Estrogen therapy

5) Noonan Syndrome

Clinical features

- Down slanting palpebral fissures
- ✓ Short stature
- ✓ Shield chest
- ✓ Cubitus valgus
- ✓ Low posterior hairline
- ✓ Webbed neck
- ✓ Posterior rotated ears
- ✓ Cryptorchidism
- ✓ Intellectual disability
- ✓ Delayed puberty
- ✓ Ptosis

Mode of inheritance?

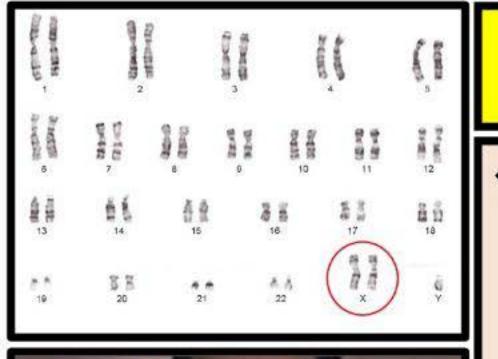
- ✓ Autosomal dominant
- ✓ PTPN11 gene on 12q24
- ✓ Normal karyotype

What is the most common cardiac defect?

- Pulmonary stenosis
- 2. Hypertrophic cardiomyopathy

Labs finding?

- ✓ Clotting factor deficiencies
 - Mainly factor XI & XII
- ✓ Abnormal platelet count/function


Increases risk of which Malignancy?

- Acute lymphocytic leukemia (ALL)
- ✓ Chronic myeloid leukemia (CML)

Treatment

✓ Growth hormone

6) Klinefelter Syndrome XXY

- Clinical features
 - √ Gynecomastia
 - ✓ Tall stature
 - ✓ Small testes
 - ✓ Micropenis
 - ✓ Normal pubic and axillary hair
 - ✓ Intellectual disability
 - ✓ Infertility
 - ✓ Behavioral problems

The most common cause of primary hypogonadism and infertility in males

Recurrence rate 1 – 2 %

- Laboratory finding?
 - ✓ Low testosterone
 - ✓ High FSH/LH
- Increases risk of :
 - ✓ Pulmonary disease
 - √ Varicose vain
 - ✓ ADHD
- Increases risk of which Malignancies?
 - ✓ Breast cancer
 - ✓ Testicular cancer
- What is the most effective treatment?

7) Fragile X Syndrome

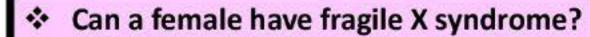
@OnSquares

Clinical features

- ✓ Long narrow face
- ✓ Prominent jaw
- ✓ Big ears
- ✓ Large hand and feet
- ✓ Macroorchidism
- ✓ Hyperextensible joints
- ✓ Intellectual disability
- ✓ Behavioral problems (Autism, ADHD)
- ✓ Speech delay
- ✓ Pes planus (Flat foot)

✓ Mitral valve prolapse

The most common form of inherited intellectual disability


But

The 2nd most common genetic intellectual disability (after trisomy 21)

- How to confirm the diagnosis?
 - ✓ Molecular genetic test for CGG allele repeat size

Mode of inheritance?

- X-linked dominant inheritance
- √ > 200 CGG repeats in FMR1 gene

- ✓ Yes, but milder symptoms
- ✓ Premature ovarian failure

Clinical features

- ✓ Long philtrum (Elfin face)
- ✓ Broad mouth.
- ✓ Short nose with bulbous nasal tip.
- ✓ Cocktail personality
- ✓ Mental retardation
- ✓ Joint laxity

8) William Syndrome

- ❖ Mode of inheritance?
 - ✓ Autosomal dominant
 - ✓ Microdeletion 7q

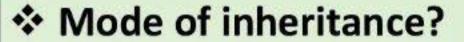
- Laboratory finding ?
 - ✓ Hypercalcemia

- Most common cardiac defect ?
 - ✓ Supravalvular aortic stenosis (80%)
 - ✓ Peripheral pulmonic stenosis
 - ✓ Pulmonary valvular stenosis

Eye problems ?

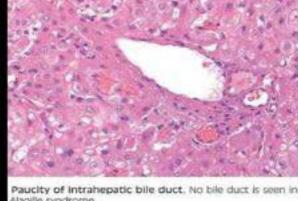
- ✓ Stellate irises
- ✓ Strabismus

The AAP recommends annual cardiology evaluations for patients with Williams syndrome.


9) Alagille syndrome

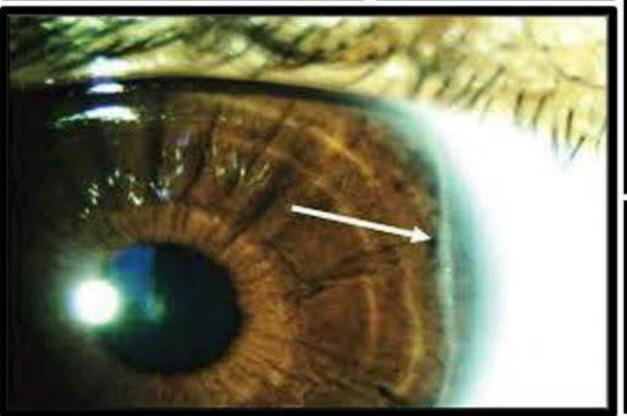
- Clinical features
 - ✓ Triangular face with pointed chin
 - ✓ Long nose
 - ✓ Cholestatic jaundice
 - ✓ Posterior embryotoxon
 - ✓ Butterfly vertebrae

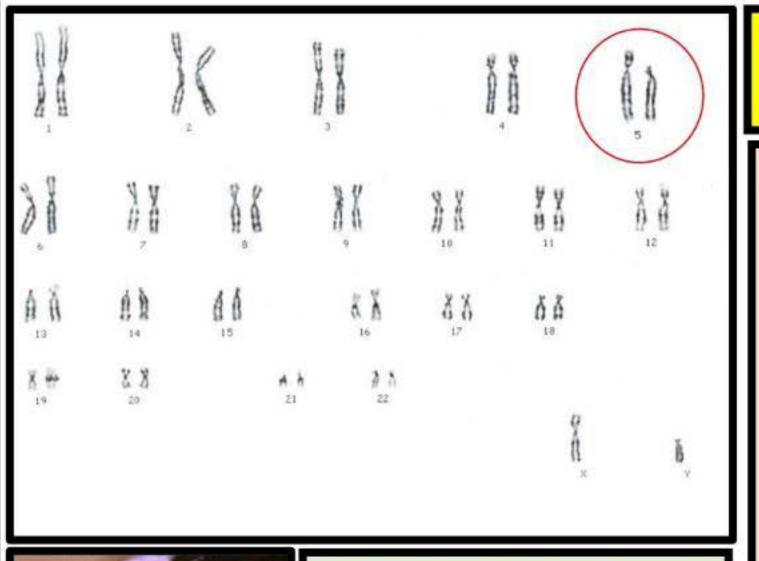
Liver biopsy show



Paucity of bile duct

- ✓ Autosomal dominant
- ✓ 20p12 deletion
- √ JAG1 gene






- Most common cardiac defect ?
- Peripheral pulmonary artery stenosis / pulmonary valve stenosis

Treatment?

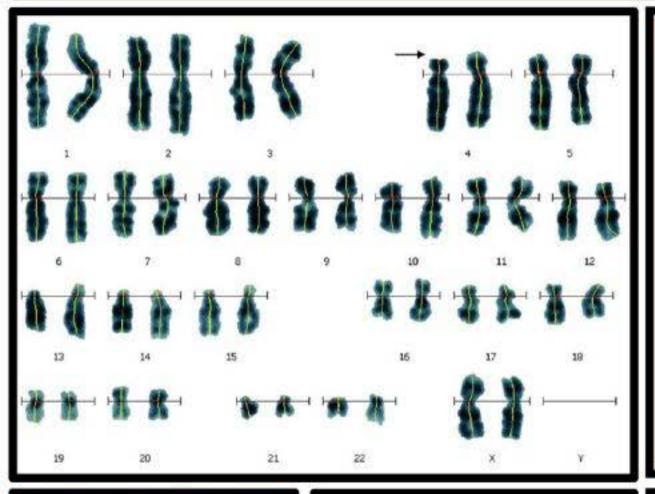
- Ursodeoxycholic acid (UDCA)
- Liver transplant

- ✓ De novo mutation
- √ 5p deletion

10) Cri du chat syndrome

Clinical features

- ✓ High pitched (Cat's like) cry (larynx anatomical changes)
- ✓ Moon face with wide spaced eyes
- ✓ Wide and flat nasal bridge
- √ Hypotonia
- ✓ Down slanting palpebral fissures
- ✓ Microcephaly
- ✓ Feeding difficulties
- ✓ Intellectual disabilities
- ✓ Failure to thrive


Common cardiac defect ?

✓ VSD, ASD, PDA & TOF

11) Wolf-Hirschhorn syndrome

Clinical features:

- ✓ Microcephaly
- √ Hypertelorism
- ✓ Prominent glabella
- ✓ Frontal bossing
- ✓ Greek helmet face
- ✓ Beaked nose
- √ Hypotonia
- √ Seizures
- ✓ Cardiac defect

Mode of inheritance?

- ✓ De novo
- ✓ Deletion of the short arm of chromosome 4

Laboratory finding?

√ IgA deficiency

Wolf-Farm syndrome

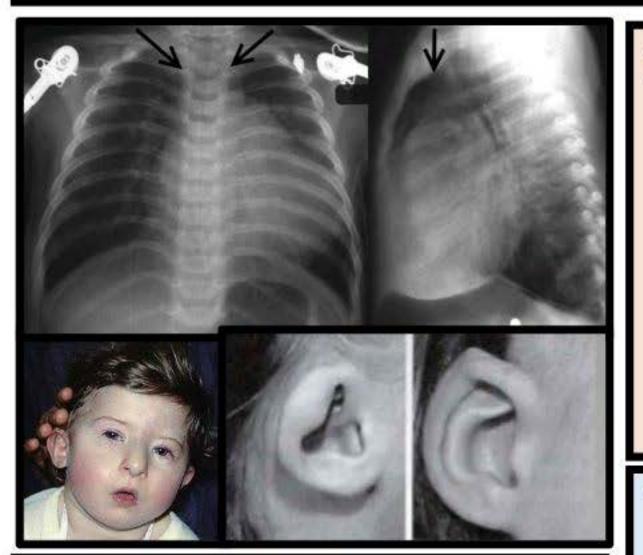
Clinical features:

- ✓ Diabetes insipidus
- ✓ Diabetes mellitus
- ✓ Blindness
- ✓ Deafness

12) Rubinstein Taybi Syndrome

Clinical features

- ✓ Broad thumbs and great toes
- ✓ Prominent nasal septum , beaked nose
- ✓ Microcephaly
- ✓ Large nails
- ✓ Long eyelashes
- ✓ Spinal cord tethering
- ✓ Cardiac defect
- ✓ Growth & mental retardation


- Mode of inheritance?
- Autosomal dominant
- ✓ Microdeletion 16q

- What is the most common cardiac defect?
- ✓ Ventricular septal defect (VSD)

CAUTION !!

Rubinstein taybi syndrome have an increase risk of complications from anesthesia

13) DiGeorge syndrome (Velocardiofacial syndrome)

- Other names?
 - ✓ 22q11.2 deletion syndrom
 - ✓ Shprintzen syndrome
- Mode of inheritance?
 - ✓ Autosomal dominant

Clinical features (CATCH 22)

- ✓ Cardiac defect
- ✓ Abnormal face (Hooded eyelids, ptosis, hypoplasia of auricles)
- √ Thymic hypoplasia (T cell abnormalities)
- ✓ Cleft palate
- ✓ Parathyroid aplasia / hypoplasia
- ✓ Hypernasal speech (Velopharyngeal incompetence)
- ✓ Hypotonia in infancy
- ✓ Learning disabilities & behavioral problems

Common cardiac defect?

- ✓ Interrupted aortic arch
- ✓ Truncus arteriosus
- ✓ Tetralogy of Fallot
- ✓ VSD

Laboratory finding?

- √ Hypocalcemia
- ✓ Low PTH
- ✓ Low IgG

It is the MOST COMMON:

- ✓ Microdeletion syndrome
- √ T-Cell disorder

- Which vaccine should be avoided?
 - ✓ live attenuated vaccine if immunodeficient

14) Angelman syndrome

Clinical features:

- ✓ Jerky ataxic movement "Happy puppet"
- ✓ Inappropriate bouts of laughter
- ✓ Excitable with hand flapping movement
- √ Hypotonia
- √ Fair hair
- ✓ Seizure
- ✓ Microcephaly
- ✓ Severe Intellectual disabilities
- ✓ Speech delay
- ✓ Abnormal creases
- ✓ Small and separated teeth

- Which medication should be avoided in seizure treatment?
 - ✓ Carbamazepine
 - ✓ Vigabatrin

Mode of inheritance?

- ✓ Sporadic
- ✓ Maternal derived deletion 15q11–13
- Maternal UPD

15) Prader Willi Syndrome (PWS)

- Clinical features in infancy
 - √ Hypotonia
 - √ feeding problems
- Clinical features in childhood
 - √ Hyperphagia
 - ✓ Central obesity
 - √ Hypogonadism
 - ✓ Short stature
 - ✓ Small hand and feet
 - ✓ Mild intellectual disability
 - ✓ Almond-shaped eyes
 - ✓ Behavioral disorder

Mode of inheritance?

- ✓ Sporadic
- ✓ Paternal derived deletion 15q11–13 (80%)
- ✓ Maternal UPD (20%)

It is the most common syndromic form of obesity

- Which medication had FDA approval to be used with PWS?
 - ✓ Growth hormone therapy
- Why they develop short stature, central obesity & hypogonadism?
 - ✓ Secondary to Hypothalamic and pituitary dysfunction

16) Beckwith-Wiedemann syndrome

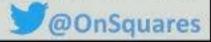
Clinical features

- ✓ Large for gestational age
- ✓ Macroglossia
- ✓ Omphalocele
- ✓ Ear lobe creases
- ✓ Posterior auricular pits
- ✓ Hemihypertrophy
- ✓ Cryptorchidism
- ✓ Umbilical hernia Pediatric On Squares
- ✓ Normal intelligence

Laboratory finding?

- ✓ Hypoglycemia
- ✓ Hyperinsulinism
 - Due pancreatic islet hyperplasia

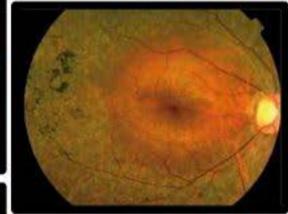
Mode of inheritance?


- ✓ Sporadic
- ✓ Autosomal dominant
- √ 15q11 deletion

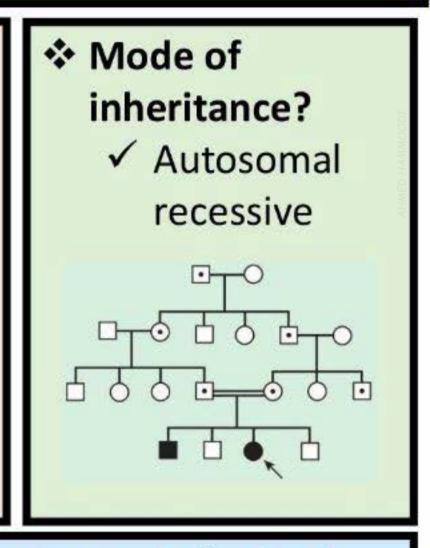
Increases risk of which Malignancies?

- ✓ Wilms tumor
- ✓ Hepatoblastoma

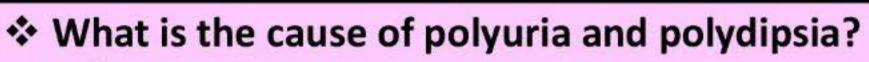
Clinic follow up?


- ✓ Abdominal US
 - Q3 months until 4 Y.O
- ✓ Alpha fetoprotein
 - Q3 months until 4 Y.O
- ✓ Renal US
 - Q3 months from 4-7 Y.O

17) Bardet-Biedl syndrome (Laurence-Moon-Biedl syndrome)



- √ Obesity
- ✓ Postaxial polydactyly
- ✓ Hypogonadism
- ✓ Retinitis pigmentosa
- ✓ Rod-cone dystrophy
- ✓ Mental retardation
- ✓ Polyuria and polydipsia
- ✓ Renal anomalies

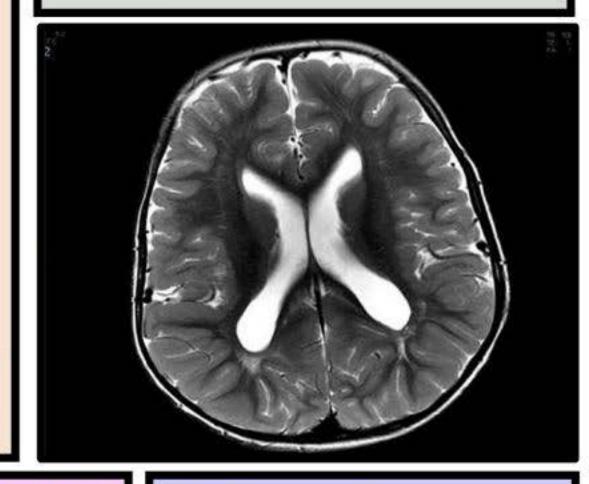


@OnSquares

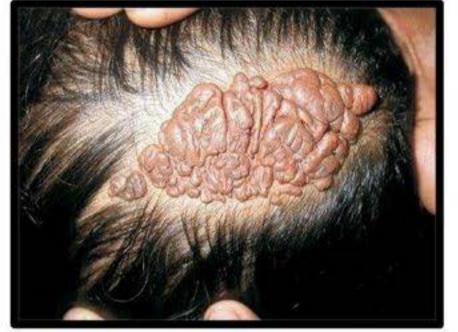
- Most common gastrointestinal association?
 - ✓ Hirschsprung disease

✓ Nephrogenic diabetes insipidus

18) Sotos syndrome (cerebral gigantism)


Clinical features

- ✓ Large for gestational age
- ✓ Excessive growth in 1st year of life
- ✓ Large head , frontal prominence
- ✓ Large hand and feet
- ✓ Premature tooth eruption
- ✓ Intellectual disability
- ✓ Behavioral problems (Autism)
- √ Seizure
- ✓ Hypotonia
- ✓ Monotone voice


√ Ventriculomegaly

- Mode of inheritance?
- ✓ Autosomal dominant
- Increases risk of which Malignancies?
- ✓ Wilms tumor
- ✓ Hepatic carcinoma

- Prognosis
- Normal life expectancy
- ✓ Developmental delay

19) Proteus Syndrome

Clinical features

- ✓ Macrodactyly
- ✓ Hemihypertrophy
- ✓ Skin changes (lipomas, vascular malformations, connective tissue nevi, epidermal)
- ✓ Scoliosis
- ✓ Tissue hypertrophy
- ✓ Accelerated growth
- ✓ Developmental delay
- ✓ Increase risk of malignancies

- What is Pathagnomic feature of Proteus syndrome?
 - ✓ Connective tissue nevi, mainly "Cerebriform nevi"
- Mode of inheritance?
 - ✓ Sporadic

- Increases risk of which Malignancies ?
- / Embryonic tumor

Mode of inheritance?

- ✓ Autosomal Dominant
- ✓ Defect in FGFR-3

Clinic follow up ?

- ✓ Head circumference.
- ✓ Hearing test annually.
- ✓ Polysomnography.

20) Achondroplasia

Clinical features

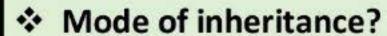
- Short stature below 3rd percentile.
- Rhizomelic Shorting (Short proximal long bones)
- Trident hands.
- Stenosis of foramen magnum.
- Macrocephaly.
- Midface hypoplasia
- Ice cream scoop shape femoral head.
- Squared-off iliac wings (Champagne glass sign).
- Increase risk of OSA & UAO.
- Delay in gross motor development.


Most common cause of death?

✓ Craniocervical junction compression

Spinal X-ray specific finding?

✓ Narrowed interpeduncular distances


21) Thanatophoric Dysplasia

Pediatric On Squares

OnSquares

Clinical features

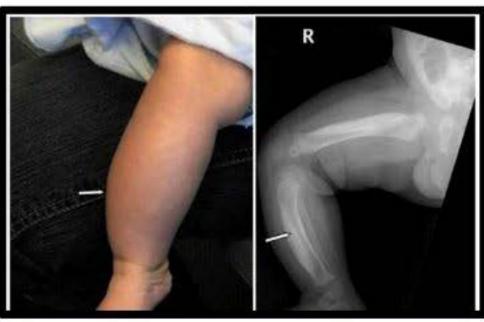
- Rhizomelic Shorting
- Small chest
- Absent sciatic notch.
- Platyspondyly (flattened vertebral bodies).
- French-telephone femurs.
- H-shaped vertebrae.
- Cloverleaf skull (severe craniosynostosis).

- ✓ Autosomal Dominant
- ✓ Defect in FGFR-3

- Craniocervical junction compression
- ✓ Pulmonary hypoplasia

Types

- Type I
 - Without cloverleaf skull
 - Telephone receiver femur
- Type II
 - With cloverleaf skull
 - Straight femur



22) Infantile cortical hyperostosis (Caffey Disease)

The bone changes typically begin before six months of age and resolve by two years.

Clinical features

- Extreme irritability.
- Soft tissue swelling.
- Fever.
- Anorexia.
- Cortical thickening of bones.
- Pseudoparalysis

Differential diagnosis

- Osteomyelitis
- Hypervitaminosis A.
- Child abuse.
- Leukemia

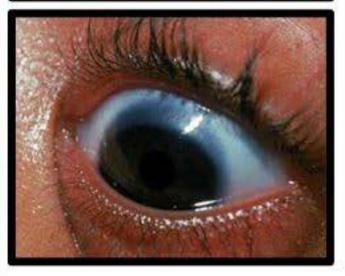
❖ Most common affected bone?
✓ Mandible

❖ Mode of inheritance?

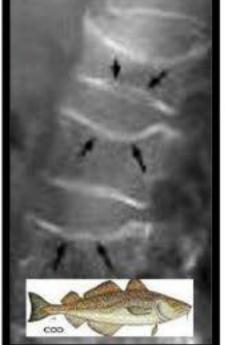
- ✓ Autosomal dominant
- ✓ COL1A1 gene

Laboratory finding?

- ✓ Leukocytosis
- ✓ Thrombocytosis
- ✓ High ESR
- ✓ High Alkaline phosphatase


Prognosis

- ✓ Self-limited condition
- ✓ Deformities of the involved bones.


23) Osteogenesis Imperfecta

Clinical features

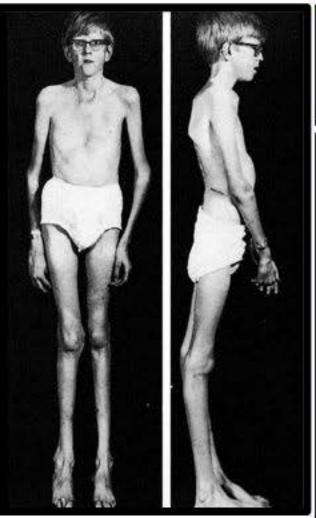
- Short stature
- Scoliosis
- Blue sclera
- Dentinogenesis imperfecta
- Hyperextensible joints
- Easy bruising.
- Wormian bones (small, irregular bones along the cranial sutures)

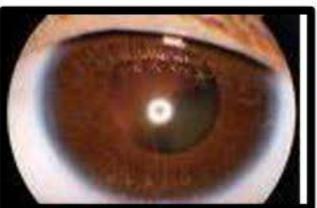
Pediatric On Squares

On Squares

- Codfish vertebrae
- Flared metaphysis (popcorn-like)

❖ Mode of inheritance?


- ✓ AD (I-IV)
- ✓ AR (rare types + IIB)
- ✓ COL1A1 gene


Common Types

- Type I
 - Most common
 - Mildest form
 - Classic nondeforming
 - Hearing loss in 50%
- Type II
 - Most severe
 - Death during newborn
- Type III
 - Progressive deforming
 - Hydrocephalus
- Type IV
 - Normal sclera
 - Tibial bowing (hallmark)

Laboratory finding?

- ✓ High alkaline phosphatase
- √ Hypercalciuria

24) Marfan Syndrome

Clinical features

Major criteria:

- ✓ Ectopia lentis.
- ✓ Aortic dilatation or dissection.
- √ Family history

Systematic score features:

Wrist AND thumb sign	3
Wrist OR thumb sign	1
Pectus carinatum deformity	2
Pectus excavatum or chest asymmetry	1
Hindfoot deformity	2
Pes planus	1
Pneumothorax	2
Dural ectasia	2
Protrusio acetabuli	2
Reduced upper segment/lower segment ratio AND increased arm/height ratio AND no severe scoliosis	1
Scoliosis or thoracolumbar kyphosis	1
Reduced elbow extension	1
Facial features (3/5): dolichocephaly, enoph- thalmos, downslanting palpebral fissures, malar hypoplasia, retrognathia	1
Skin striae	1
Myopia >3 diopters	-1
Mitral valve prolapse	1

Mode of inheritance?

- ✓ Autosomal dominant
- ✓ FBN1 gene

Monitoring?

✓ Annual echocardiogram.

How to confirm the diagnosis?

Ghent criteria

- 2 major criteria
- 1 major + FBN1 gene mutation
- 1 major + ≥7 more systematic score

Most common cardiac defect ?

- ✓ Mitral valve prolapse
- ✓ Aortic root dilatation

Most common cause of death?

- ✓ Cardiovascular complications
- ✓ Rupture aortic root dilatation

25) Ehlers-Danlos syndromes (EDS)

Clinical features

- ✓ Generalized joint hypermobility
- ✓ Hyperextensible skin
- ✓ Fragile skin.
- ✓ Increased bruising
- ✓ Velvety skin
- √ Kyphoscoliosis
- ✓ Swan-neck malformation
- ✓ Piezogenic papules
- ✓ Gorlin's sign
- ✓ Cigarette paper scar
- ✓ Fish mouth appearance of skin tears.
- √ Hypotonia

THE BEIGHTON SCORE

How to Assess Joint Hypermobility

A numerical mobility score of 0 to 9, one point allocated for the ability to perform each of the following tests:


Pull little finger back beyond 90° (one point for each side)

Pull thumb back to touch forearm (one point for each side)

Bend elbow backwards beyond 10° (one point for each side)

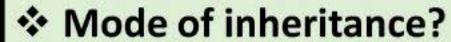
Bend knee backwards beyond 10° (one point for each side)

Lie hands flat on floor while keeping knees straight and bending forward at waist

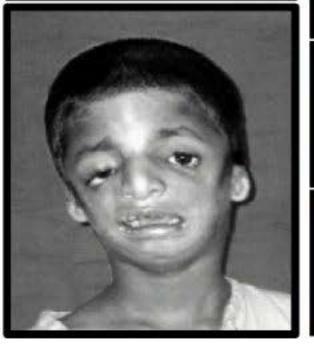
A positive Beighton score for adults is 5 out of the 9 possible points; for children, a positive score is at least 6 out of 9 points.

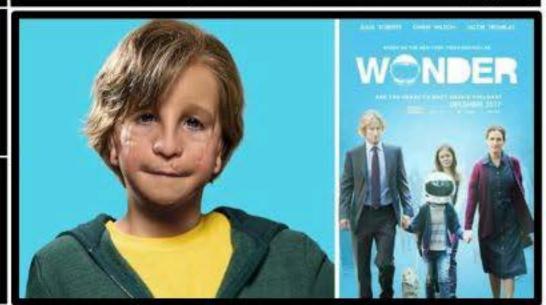
- Mode of inheritance?
- ✓ Autosomal dominant
- ✓ Rarely AR
- Most common cardiac defect ?
- ✓ Mitral valve prolapse
- ✓ Aortic root dilatation
- Laboratory finding include normal coagulation expect ?
- ✓ Capillary fragility test
- Monitoring?
- ✓ Annual echocardiogram.
- Most severe type?
- ✓ Vascular (vEDS; EDS type IV)

26) Treacher Collins Syndrome (Mandibulofacial Dysostosis)



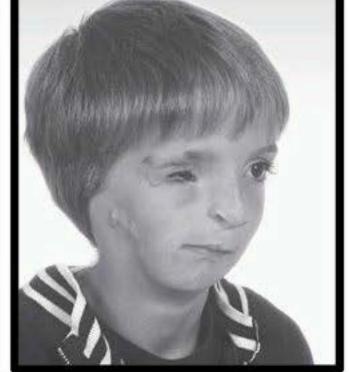
- ✓ Zygomatic and mandibular bone hypoplasia
- ✓ Eyelid colobomas
- ✓ Sparse eye lashes
- ✓ Microretrognathia
- ✓ Choanal atresia
- ✓ Microtia
- ✓ Conductive hearing loss
- ✓ Cleft lip / palate




- ✓ Autosomal dominant
- ✓ TCOF1 gene

- ✓ Vision assessment
- ✓ Hearing assessment
- ✓ Feeding difficulties
- ✓ Speech therapy
- ✓ Psychosocial therapy

- Most common neonatal problem?
 - ✓ Airway difficulties
- * What is the level of intelligence?
 - ✓ Normal



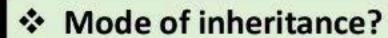
27) Goldenhar syndrome (oculo-auriculo-vertebral spectrum)

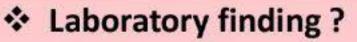
Clinical features

- ✓ Facial asymmetry (hemifacial macrosomia)
- ✓ Microtia
- ✓ Preauricular tags
- ✓ Microphthalmia
- ✓ Limbal (Epibulbar) dermoid (Pathagnomic)
- ✓ Eyelid coloboma
- Facial nerve involvement leads to hypoplasia of the facial muscles.
- ✓ Hypoplasia or absence of the parotid gland.
- √ Vetebral anomalies (Hemivertebrae)
- ✓ Cardiac defect (VSD)

Mode of inheritance?

- ✓ Sporadic




28) Branchio-oto-renal (BOR) syndrome

Clinical features

- ✓ Branchial cleft fistulas / cysts
- ✓ Preauricular pits / tags
- ✓ Renal aplasia / hypoplasia ,
- ✓ Sensory / conductive hearing loss
- ✓ Pulmonary hypoplasia

✓ Autosomal dominant

- ✓ Low renin
- ✓ Low aldosterone
- ✓ Hyperkalemia
- ✓ Hyperchloremia
- ✓ Metabolic acidosis

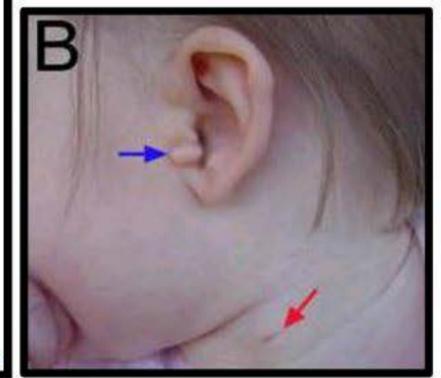
Major criteria

Deafness

Preauricular pits

Renal anomalies

Minor criteria


External ear anomalies

Middle ear anomalies

Inner ear anomalies
Preauricular tags

Others: Facial asymmetry, palatal abnormalities

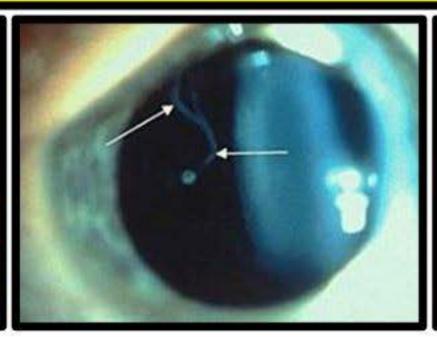
Three major or two major and two minor criteria are required for a diagnosis of Branchio-oto-renal syndrome. In those with an affected first-degree relative with BOR syndrome, one major criterion is sufficient for diagnosis.

29) Pierre Robin sequence (Pierre Robin syndrome)

Clinical features

- ✓ Mandibular hypoplasia
- ✓ Micrognathia
- ✓ Glossoptosis (backward displacement of the tongue)
- ✓ U shaped cleft palate
- ✓ Birdlike facial appearance.
- ✓ Upper airway obstruction

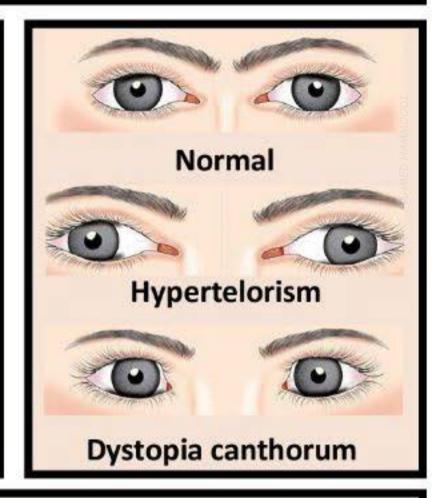
❖ Mode of inheritance?

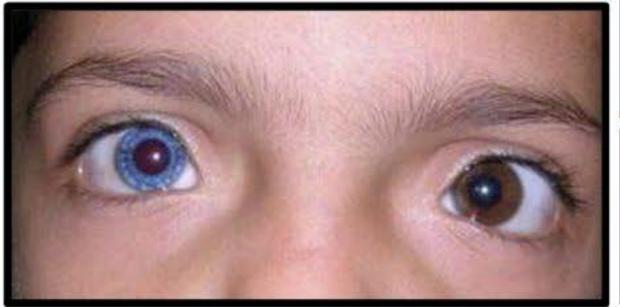

- ✓ De novo mutation
- ✓ SOX9 gene
- Most common cause of death?
 - ✓ Upper airway obstruction

30) Stickler syndrome (hereditary arthroophthalmopathy)

Clinical features

- ✓ Pierre Robin sequence +
- ✓ Flat midface and nasal bridge
- ✓ Joint hypermobility
- ✓ Myopia
- ✓ Sensorineural deafness
- ✓ Cleft of the soft palate
- ✓ Arthritis


- Mode of inheritance?
 - ✓ Autosomal dominant
- What is the pathognomonic eye finding?
 - ✓ Vitreous gel anomaly
- What is ophthalmic emergency associated with stickler syndrome?
 - ✓ Retinal detachment



31) Waardenburg syndrome

Clinical features

- ✓ White forelock
- ✓ Square face
- ✓ Thin nose, wide nasal bridge
- ✓ Dystopia canthorum
- √ Heterochromia
- ✓ Sensorineural deafness
- ✓ Skin depigmentation

- Mode of inheritance?
 - ✓ Autosomal dominant
- Most common gastrointestinal association?
 - ✓ Hirschsprung disease

32) Apert syndrome

- ✓ Complex syndactyly (mitten hand)
- Bicoronal craniosynostosis
- ✓ Maxillary hypoplasia
- Exorbitism (Protruding eyes)
- Hypertelorism
- Midface hypoplasia
- Intellectual disability

What is the most common dermatological complication with Apert syndrome?

✓ Severe acne vulgaris

Other Craniosynostosis syndromes

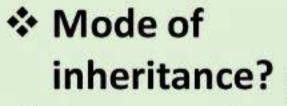
Craniosynostosis syndromes

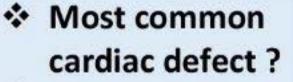
- Apert syndrome (Bicoronal suture)
- Crouzon syndrome (Bicoronal suture)
- Carpenter syndrome (Multiple sutures)
- Saethre-Chotzen syndrome (Multiple sutures)
- Pfeiffer syndrome (Multiple sutures)

Mode of inheritance?

- All of them Autosomal dominant except:
- Carpenter syndrome (Autosomal recessive)
- Which craniosynostosis syndromes have normal intelligence?
 - Crouzon syndrome
- Which craniosynostosis syndromes have normal hands?
 - ✓ Crouzon syndrome (No syndactyly)
- Which craniosynostosis syndromes without hypertelorism?
 - √ Saethre-Chotzen syndrome

33) Cornelia de Lange Syndrome



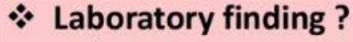


Clinical features


- ✓ Long eyelashes
- ✓ Bushy and arched eyebrows
- √ Hirsutism
- ✓ Low hairline
- ✓ Downward-turned mouth
- ✓ IUGR
- ✓ Short stature
- ✓ Thin upper lip
- ✓ Micromelia
- ✓ Lobster hand
- ✓ Syndactyly
- ✓ Ulnar dysplasia
- ✓ Mental retardation **9**@onSquares

Autosomal dominant

- ✓ Pulmonary stenosis
- ✓ VSD
- ✓ ASD
- ✓ CoA

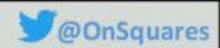


34) Ataxia Telangiectasia

Clinical features

- ✓ Cerebellar ataxia
- ✓ Oculocutaneous telangiectasia
 - Bulbar conjunctivae.
 - Ears
 - Neck
 - Cubital fossae
- ✓ Recurrent infection
- ✓ Increase risk of malignancy

- ✓ High serum alphafetoprotein (AFP)
- ✓ High carcinoembryonic antigen (CEA)
- ✓ Low IgA, IgG & IgE


- What is the most consistent laboratory abnormality?
 - ✓ High AFP



Mode of inheritance?

- ✓ Autosomal recessive
- ✓ ATM gene
- ✓ Due to chromosome instability

- Which part of immune system is impaired?
 - ✓ Both cellular and humoral immunity
- Associated with increase sensitivity to ionizing radiation

35) Osler Weber Rendu Syndrome (Hereditary hemorrhagic Telangiectasia)

Clinical features

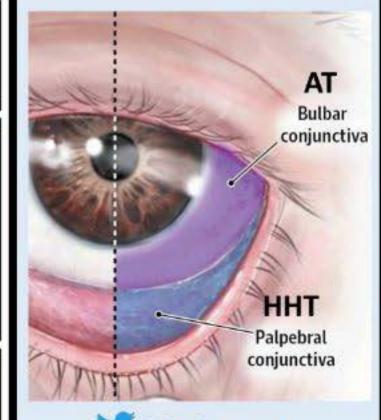
- ✓ Telangiectasia (lips, gingiva, tongue, palate and palpebral conjunctiva)
- ✓ Recurrent epistaxis (Night time)
- √ Vascular malformation (Lung, liver, GI & brain)

Mode of inheritance?

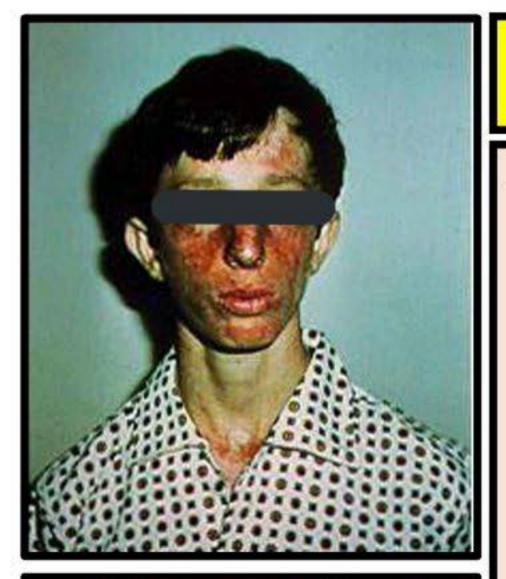
✓ Autosomal dominant

Complications?

- ✓ Intracranial hemorrhage
- ✓ Pulmonary hemorrhage
- ✓ GI bleeding



The most common cause of pulmonary arteriovenous malformation


Conjunctival finding in Hereditary hemorrhagic Telangiectasia (HHT)


VS

Ataxia Telangiectasia (AT)

@OnSquares

36) Bloom syndrome

Clinical features

- ✓ Café-au-lait spots
- ✓ Photosensitive rash
- ✓ Long narrow face
- ✓ Prominent nose
- ✓ IUGR
- ✓ Microcephaly
- ✓ Short stature
- ✓ Infertility
- ✓ Immune deficiency

❖ Mode of inheritance?

- ✓ Autosomal recessive
- ✓ Due to chromosome instability

Increase risk of:

- ✓ Malignancies
- ✓ Immunodeficiency

Laboratory finding?

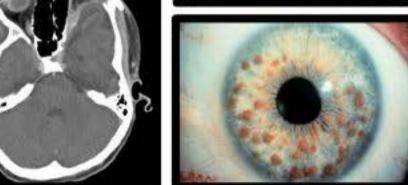
- ✓ Low immunoglobulin level
- ✓ Lymphopenia

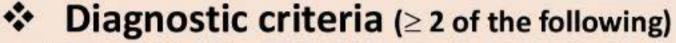
Most common cause of death?

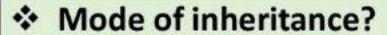
- ✓ Cancers
 - Mainly leukemia

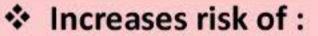
Avoid radiographs

Adequate sun protection


37) Neurofibromatosis type 1 (von Recklinghausen disease)







- ≥ 6 café-au-lait macules
 - > 5 mm in in prepubertal
 - > 15 mm in in postpubertal
- ≥ 2 neurofibromas or 1 plexiform neurofibroma
- Axillary or inguinal freckling (Crowe sign)
- Optic glioma
- ≥ 2 iris hamartoma (Lisch nodules)
- Distinctive bony lesion:
 - Sphenoid dysplasia, or
 - Tibial pseudoarthrosis, or
 - Cortical thickening of the long bone
- A first-degree relative with NF1
- ❖ What is 1st manifestation typically appears?
 - ✓ Café-au-lait macules
- What is most common type of benign tumor in NF1?
 - ✓ Neurofibromas

- ✓ AD (50%)
- ✓ De novo (50%)
- NF1 gene on chromosome 17

- Malignancies
- ✓ Primary HTN
- ✓ Learning disabilities
- √ Seizures

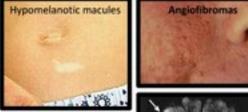
- ✓ Annual vision exam
- **BP** monitoring
- Annual full physical examination
- Tumor surveillance

38) Neurofibromatosis type 2 (MISME syndrome)

- Diagnostic criteria (1 of the following sets)
- ✓ Bilateral vestibular schwannomas (acoustic neuromas)
- ✓ Unilateral vestibular schwannoma AND first-degree relative with NF2.
- ✓ Unilateral vestibular schwannoma Or first-degree relative with NF2 AND any 2 of the following:

OnSquares

- Meningioma
- Nonvestibular schwannoma
- Ependymoma
- Cataract

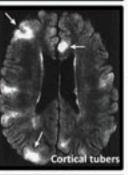

- ✓ Tinnitus
- ❖ What is 1st manifestation typically appears ?
 ✓ Cataract
- ❖ What is most common type of tumor in NF2?
 - ✓ Schwannomas
- What is most common affected cranial nerve with schwannomas?
 - ✓ CN VIII (vestibulocochlear nerve)

- * Mode of inheritance?
 - ✓ Autosomal dominant
 - ✓ NF2 gene on chromosome 22

Other clinical features

Hearing loss

- Café-au-lait macules can be seen but are much less frequent in NF2.
- NF2 is not associated with the cognitive impairment that is often seen with NF1.

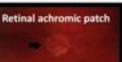


Retinal hamartomas

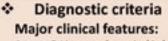
Ungual fibromas

Shagreen patch

Fibrous cephalic plaque

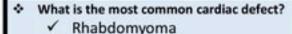


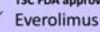
Confetti lesions



- ≥ 3 Hypomelanotic (Ash leaf) spot >5 mm
- Shagreen patch (connective tissue nevus) Multiple retinal hamartomas
- Cortical dysplasias (cortical tubers)
- Subependymal nodules
- Subependymal giant cell astrocytoma
- Cardiac rhabdomyoma
- Lymphangioleiomyomatosis (LAM)* Angiomyolipomas (≥2)*
- Minor clinical features:
- "Confetti" skin lesions
- Dental enamel pits (≥3) Intraoral fibromas (≥2)
- Retinal achromic patch
- Multiple renal cysts Nonrenal hamartomas
- Definite TSC: 2 major or 1 major and ≥ 2 or
- Possible TSC: 1 major or ≥ 2 minor

manifestation? Angiomyolipomas ≥3 Angiofibromas or fibrous cephalic plaque ≥2 Ungual fibromas (≥2) Mode of inheritance?

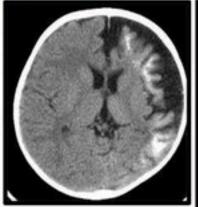

@OnSquares

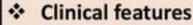

Autosomal dominant

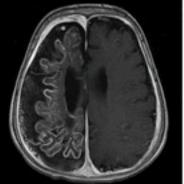

What is the most

common renal

- TSC1 gene on ch. 9 TSC2 gene on ch. 16
- Which 2 major criteria without other features does not meet criteria for definite diagnosis?
- Angiomyolipomas
- LAM
- What is the most common neurological
- complication?
- Infantile spasm 1st Tx Vigabatrin
 - TSC FDA approved Tx?





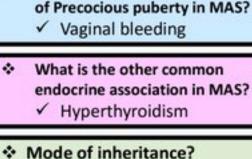

40) Sturge Weber syndrome

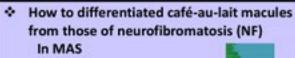
- ✓ Port wine stain (1st & 2nd division of trigeminal nerve)
- ✓ Ipsilateral leptomeningeal angioma
- √ Glaucoma
- ✓ Diffuse choroidal hemangioma
- ✓ Seizures (on contralateral side)
- ✓ Focal neurologic deficits
- ✓ Buphthalmos
- ✓ Intellectual disability.

Mode of inheritance?

✓ Not inherited, due somatic mutation

- What is the best neuroimaging diagnostic study?
 - ✓ Brain MRI with gadolinium contrast
 - ✓ Tram track calcification

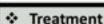

41) McCune-Albright syndrome (MAS)


Clinical features Classic triad

- ✓ Precocious puberty
- ✓ Café-au-lait macules
- ✓ Polyostotic fibrous dysplasia

What is the classic presenting sign

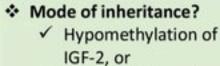
- What is the most characteristic laboratory finding?
 - High growth hormone
 - High prolactin
 - High luteinizing hormone (LH)
 - High follicle-stimulating hormone (FSH)
 - Hypophosphatemia & hyperphosphaturia



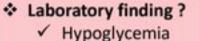
- Coast of Maine borders
- Irregular borders Never cross midline
- In NF
- Coast of California
- Smooth borders
- Cross midline

- ✓ Sporadic
- ✓ Mutation in the GNAS1 gene
- ✓ More common in girls

- **GnRH** agonist
- Oral phosphate and calcitriol



42) Russel Silver syndrome


Clinical features

- ✓ Short stature
- ✓ Small for gestational age
- √ Hemihypertrophy
- ✓ Pseudohydrocephlus
- ✓ Triangular face
- ✓ Inverted V shaped mouth
- ✓ Crap shape mouth
- ✓ Café au lait macules
- √ 5th finger Clinodactyly
- √ Syndactyly
- ✓ Excessive sweating
- ✓ Male genital abnormalities
- ✓ High-pitched voice
- ✓ Shoulder dimples
- ✓ Failure to thrive
- ✓ Speech delay

✓ Maternal UPD of chromosome 7

43) CHARGE Syndrome

Diagnostic criteria

Major criteria

- Ocular colobomas
- Choanal atresia
- Cranial nerve dysfunction (Anosmia, facial palsy, auditory nerve hypoplasia)
- Ear anomalies

Minor criteria

- Genital hypoplasia
- Developmental delay
- Cardiovascular anomalies
- Cleft lip and/or palate
- Tracheoesophageal fistula or esophageal atresia
- Facial dysmorphology (Square face, prominent forehead, flat midface)
- Growth failure
- 'J'-shaped hockey stick palmar crease


❖ Mode of inheritance?

- Autosomal dominant
- CHD7 gene

- 4 major Or
- 3 major and 3 minor
- Probable CHARGE syndrome:
- 1 or 2 major and several minor.

- - What is the most common cardiac defect?
 - Tetralogy of fallot
 - Conotruncal defect
 - ✓ Arch anomalies

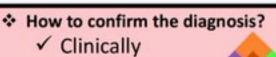
44) VACTERL association

Clinical features

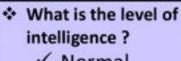
- √ Vertebral defect
- ✓ Anal atresia
- ✓ Congenital heart defect
- ✓ Tracheoesophageal fistula
- ✓ Esophageal Atresia
- ✓ Renal anomalies
- ✓ Limb (radial) hypoplasia

+

√ Single umbilical artery


Mode of inheritance?

Sporadic


What is the most

- ✓ TOF
- ✓ ASD
- ✓ PDA

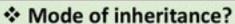
√ ≥ 3 features

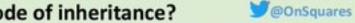
✓ Normal

 Note CHARGE have intellectual disability

45) Poland Syndrome

- Clinical features
 - Unilateral absence of the pectoralis muscle.
 - Aplasia of ipsilateral
 - Ribs
 - Costal cartilages
 - **Nipples**
 - ✓ Abnormalities of ipsilateral proximal & distal upper extremity
 - Dextrocardia
 - Diaphragmatic hernia





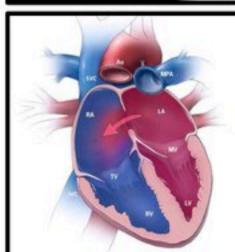
- Which maternal disease increase the risk of Poland syndrome?
 - Maternal diabetes.

✓ Not inherited, unknown cause

46) Möbius Syndrome

- Clinical features
 - ✓ Facial (VII) nerve paralysis
 - ✓ Abducens (VI) nerve paralysis
 - ✓ Expressionless
 - √ Strabismus
 - ✓ Club feet
 - ✓ Absent fingers or toes
 - ✓ Unilateral chest deformity
 - ✓ Tongue atrophy
 - ✓ Dental problems

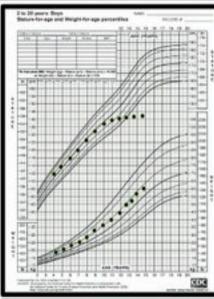
- * Mode of inheritance?
 - ✓ Autosomal dominant
- Strong association with which syndrome?
 - ✓ Poland Syndrome



47) Holt Oram Syndrome

- Clinical features ✓ Thumb

 - Aplasia / hypoplasia
 - Triphalangeal
 - ✓ Radial hypoplasia ✓ Clavicle hypoplasia



- Mode of inheritance? ✓ Autosomal dominant
- What is the most common cardiac defect? ✓ Atrial septal defect (ASD)
 - √ 1st degree heart block

NO hematological abnormalities

Celiac Disease "Gluten Sensitive Enteropathy"

Definition:

- ✓ Is an autoimmune enteropathy characterized by chronic inflammation of the small intestinal mucosa triggered by gluten uptake in genetically susceptible
- individuals.

 At which part of bowel the inflammation of celiac disease starts?

Proximal small intestine (duodenum) and progresses

- distally

 What is the MOST common extra-intestinal
- manifestation?

 ✓ Iron deficiency anemia, unresponsive to iron therapy
- (Why?)
 What is the pathognomonic dermatological feature?
- Dermatitis herpetiformis
- Which syndromes are at higher risk for celiac disease?
- Down syndrome
- William syndrome
- Turner Syndrome
- Also Celiac disease can associated with other autoimmune disease
- Which food items contains gluten?
- ✓ Wheat, rve, barley & oats
- Which enzyme is responsible for the deamidation of glutamine residues in gluten, thus triggering the cascade that results in villous atrophy?
 - Tissue transglutaminase

Diagnosis

What is the initial recommended serum test?

Tissue transglutaminase (tTG) antibody IgA
 What is the most sensitive and specific antibody test?

- ✓ IgA Tissue transglutaminase (tTG) antibody Followed by :
- ✓ IgA Anti-endomysial antibody (EMA)
- ✓ IgA Anti-gliadin antibody (AGA)
 ✓ IgA Anti-deamidated gliadin peptide antibody (DGP)
- IgG Anti-deamidated gliadin peptide antibody (DGP)

 All antibodies test Should be done while the patient on
- All antibodies test Should be done while the patient on gluten containing diet Which laboratory findings can cause a false-negative screen
- ✓ Low or absent levels of IgA
 What is the gold standard test for diagnosis?
- ✓ Small Intestine biopsy (before start gluten free diet)
 What is the classic histological finding?
- ✓ Increase intraepithelial lymphocytes (>25 IEL/100 enterocytes)
- ✓ Crypt elongation
- ✓ Partial or total villous atrophy
 What human leukocyte antigen (HLA) type is commonly
- associated with Celiac disease?
- ✓ HLA-DR3-DQ2

for anti-tTG IgAs?

✓ HLA-DR4-DQ8.

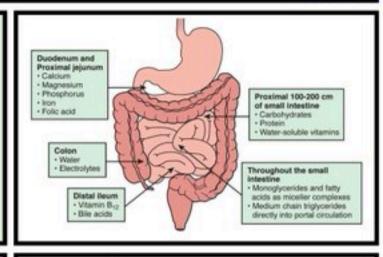
Treatment & Follow Up
What is the main treatment of celiac disease?

✓ Gluten free diet

How to follow up the compliance with dietary therapy?

✓ Normal tTG IgA levels (Zero or low level)

Lesch Nyhan Disease


- It is a disorder of <u>purine metabolism</u> due to <u>HPRT</u> (Hypoxanthin-Guanine Phosphoribosyltransferase) deficiency.
- Caused by mutations in the HPRT1 gene and is inherited as an X-linked recessive.
- Characterized by neurological and behavioral abnormalities and hyperuricemia.
- Neurological abnormalities include dystonia, chorea, hypotonia and ballismus, also they are usually cannot walk.
- Self-injury (including fingers and mouth biting and head banging) is the <u>most common</u> and distinctive behavioral problem, also they have developmental delay.
- · Hyperuricemia can cause gouty arthritis, kidney and bladder stones.
- Treatment is symptomatic and supportive focuses on <u>prevention of renal failure</u> by pharmacologic <u>treatment of hyperuricemia</u>, with high fluid intake along with alkalization and allopurinol.
- Affected people often do not survive past the first or second decade of life due to <u>renal failure</u>.

Short bowel syndrome

- At birth, the length of small bowel is <u>200-</u> <u>250 cm</u>; by adulthood, it grows to <u>300-800</u> cm.
- Why bowel resection in an infant has a better prognosis than in an adult?
 - Because of the potential for intestinal growth and adaptation.
- How much bowel do infant need to survive and be eventually weaned from parenteral nutrition?
 - √ 15 cm of bowel with an ileocecal valve
 - ✓ 20 cm without an ileocecal

Table 364.11 Causes of Short Bowel Syndrome

CONGENITAL

Congenital short bowel syndrome Intestinal atresia Gastroschisis

BOWEL RESECTION

Necrotizing enterocolitis Volvulus with or without malrotation Long segment Hirschsprung disease Meconium peritonitis

Crohn disease Trauma